Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Infect ; 87(2): 111-119, 2023 08.
Article in English | MEDLINE | ID: covidwho-20235389

ABSTRACT

OBJECTIVES: Intradermal skin test (IDT) with mRNA vaccines may represent a simple, reliable, and affordable tool to measure T cell response in immunocompromised patients who failed to mount serological responses following vaccination with mRNA covid-19 vaccines. METHODS: We compared anti-SARS-CoV-2 antibodies and cellular responses in vaccinated immunocompromised patients (n = 58), healthy seronegative naive controls (NC, n = 8), and healthy seropositive vaccinated controls (VC, n = 32) by Luminex, spike-induced IFN-γ Elispot and an IDT. A skin biopsy 24 h after IDT and single-cell RNAseq was performed in three vaccinated volunteers. RESULTS: Twenty-five percent of seronegative NC had a positive Elispot (2/8) and IDT (1/4), compared to 95% (20/21) and 93% (28/30) in seropositive VC, respectively. Single-cell RNAseq data in the skin of VC showed a predominant mixed population of effector helper and cytotoxic T cells. The TCR repertoire revealed 18/1064 clonotypes with known specificities against SARS-CoV-2, among which six were spike-specific. Seronegative immunocompromised patients with positive Elispot and IDT were in 83% (5/6) treated with B cell-depleting reagents, while those with negative IDT were all transplant recipients. CONCLUSIONS: Our results indicate that delayed local reaction to IDT reflects vaccine-induced T-cell immunity opening new perspectives to monitor seronegative patients and elderly populations with waning immunity.


Subject(s)
COVID-19 , T-Lymphocytes , Aged , Humans , COVID-19 Vaccines , COVID-19/diagnosis , COVID-19/prevention & control , SARS-CoV-2 , Biomarkers , mRNA Vaccines , Antibodies, Viral , Immunocompromised Host , Skin Tests , Vaccination
2.
JAMA Oncol ; 8(5): e220446, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1733819

ABSTRACT

Importance: There are limited comparative data on the durability of neutralizing antibody (nAb) responses elicited by messenger RNA (mRNA) vaccines against the SARS-CoV-2 variants of concern (VOCs) in immunocompromised patients and healthy controls. Objective: To assess the humoral responses after vaccination with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccines. Design, Setting, and Participants: In this prospective, longitudinal monocentric comparative effectiveness study conducted at the Lausanne University Hospital, binding IgG anti-spike antibody and nAb levels were measured at 1 week, 1 month, 3 months, and 6 months after vaccination with mRNA-1273 (24.6% of participants) or BNT162b2 (75.3% of participants). Interventions: All participants received 2 doses of either mRNA-1273 or BNT162b2 vaccines 4 to 6 weeks apart. Main Outcomes and Measures: The primary outcome of the study was the persistence of nAb responses against the original, nonvariant SARS-CoV-2 (2019-nCoV) and different VOCs at 6 months after vaccination. Key secondary outcomes were associations of the type of mRNA vaccine, the underlying disease, and the treatment with the response to vaccination. Results: Among the 841 participants enrolled between January 14 and August 8, 2021, the patient population comprised 637 participants (mean [SD] age, 61.8 [13.7] years; 386 [60.6%] female), and the healthy control population comprised 204 participants (mean [SD] age, 45.9 [12.0] years; 144 [70.6%] female). There were 399 patients with solid cancers, 101 with hematologic cancers, 38 with solid organ transplants, 99 with autoimmune diseases, and 204 healthy controls. More than 15 000 nAb determinations were performed against the original, nonvariant 2019-nCoV and the Alpha, Beta, Gamma, and Delta variants. The proportions of nAbs and their titers decreased in all study groups at 6 months after vaccination, with the greatest decreases for the Beta and Delta variants. For Beta, the proportion decreased to a median (SE) of 39.2% (5.5%) in those with hematologic cancers, 44.8% (2.7%) in those with solid cancers, 23.1% (8.3%) in those with solid organ transplants, and 22.7% (4.8%) in those with autoimmune diseases compared with 52.1% (4.2%) in healthy controls. For Delta, the proportions decreased to 41.8% (5.6%) in participants with hematologic cancer, 51.9% (2.7%) in those with solid cancers, 26.9% (8.7%) in those with solid organ transplants, and 30.7% (5.3%) in those with autoimmune diseases compared with 56.9% (4.1%) healthy controls. Neutralizing antibody titers decreased 3.5- to 5-fold between month 1 and month 6, and the estimated duration of response was greater and more durable among those participants vaccinated with mRNA-1273. In participants with solid cancers, the estimated duration of nAbs against the Beta variant was 221 days with mRNA-1273 and 146 days with BNT162b2, and against the Delta variant, it was 226 days with mRNA-1273 and 161 with BNT162b2. The estimated duration of nAbs in participants with hematologic cancers was 113 and 127 days against Beta and Delta variants, respectively. Conclusions and Relevance: This comparative effectiveness study suggests that approximately half of patients with hematologic cancers and solid cancers, about 70% of patients with solid organ transplants or autoimmune diseases, and 40% of healthy controls have lost nAbs against the circulating VOCs at 6 months after vaccination. These findings may be helpful for developing the best boosting vaccination schedule especially in immunocompromised patients.


Subject(s)
Autoimmune Diseases , COVID-19 , Hematologic Neoplasms , Neoplasms , Aged , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunocompromised Host , Immunoglobulin G , Male , Middle Aged , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
3.
Genome Biol ; 23(1): 33, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1649470

ABSTRACT

We consider an increasingly popular study design where single-cell RNA-seq data are collected from multiple individuals and the question of interest is to find genes that are differentially expressed between two groups of individuals. Towards this end, we propose a statistical method named IDEAS (individual level differential expression analysis for scRNA-seq). For each gene, IDEAS summarizes its expression in each individual by a distribution and then assesses whether these individual-specific distributions are different between two groups of individuals. We apply IDEAS to assess gene expression differences of autism patients versus controls and COVID-19 patients with mild versus severe symptoms.


Subject(s)
Autistic Disorder/genetics , COVID-19/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Software , Autistic Disorder/metabolism , Autistic Disorder/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Gene Expression Profiling , Gene Expression Regulation , Humans , Microglia/metabolism , Microglia/pathology , Nerve Tissue Proteins/classification , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , SARS-CoV-2/pathogenicity , Severity of Illness Index , Exome Sequencing
4.
Nat Biotechnol ; 40(1): 30-41, 2022 01.
Article in English | MEDLINE | ID: covidwho-1585828

ABSTRACT

Gaining a better understanding of the immune cell subsets and molecular factors associated with protective or pathological immunity against severe acute respiratory syndrome coronavirus (SARS-CoV)-2 could aid the development of vaccines and therapeutics for coronavirus disease 2019 (COVID-19). Single-cell technologies, such as flow cytometry, mass cytometry, single-cell transcriptomics and single-cell multi-omic profiling, offer considerable promise in dissecting the heterogeneity of immune responses among individual cells and uncovering the molecular mechanisms of COVID-19 pathogenesis. Single-cell immune-profiling studies reported to date have identified innate and adaptive immune cell subsets that correlate with COVID-19 disease severity, as well as immunological factors and pathways of potential relevance to the development of vaccines and treatments for COVID-19. For facilitation of integrative studies and meta-analyses into the immunology of SARS-CoV-2 infection, we provide standardized, download-ready versions of 21 published single-cell sequencing datasets (over 3.2 million cells in total) as well as an interactive visualization portal for data exploration.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Data Visualization , Datasets as Topic , Immunity, Innate , SARS-CoV-2/immunology , Single-Cell Analysis , Animals , COVID-19/genetics , Data Analysis , Humans , Transcriptome
5.
Sci Adv ; 7(46): eabj0274, 2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1511407

ABSTRACT

Despite recent studies of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), little is known about how the immune response against SARS-CoV-2 differs from other respiratory infections. We compare the immune signature from hospitalized SARS-CoV-2­infected patients to patients hospitalized prepandemic with influenza or respiratory syncytial virus (RSV). Our in-depth profiling indicates that the immune landscape in SARS-CoV-2 patients is largely similar to flu or RSV patients. Unique to patients infected with SARS-CoV-2 who had the most critical clinical disease were changes in the regulatory T cell (Treg) compartment. A Treg signature including increased frequency, activation status, and migration markers was correlated COVID-19 severity. These findings are relevant as Tregs are considered for therapy to combat the severe inflammation seen in COVID-19 patients. Likewise, having defined the overlapping immune landscapes in SARS-CoV-2, existing knowledge of flu and RSV infections could be leveraged to identify common treatment strategies.

6.
Nat Biotechnol ; 40(1): 110-120, 2022 01.
Article in English | MEDLINE | ID: covidwho-1397879

ABSTRACT

A better understanding of the metabolic alterations in immune cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may elucidate the wide diversity of clinical symptoms experienced by individuals with coronavirus disease 2019 (COVID-19). Here, we report the metabolic changes associated with the peripheral immune response of 198 individuals with COVID-19 through an integrated analysis of plasma metabolite and protein levels as well as single-cell multiomics analyses from serial blood draws collected during the first week after clinical diagnosis. We document the emergence of rare but metabolically dominant T cell subpopulations and find that increasing disease severity correlates with a bifurcation of monocytes into two metabolically distinct subsets. This integrated analysis reveals a robust interplay between plasma metabolites and cell-type-specific metabolic reprogramming networks that is associated with disease severity and could predict survival.


Subject(s)
COVID-19/blood , COVID-19/immunology , Monocytes/metabolism , Single-Cell Analysis , T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/metabolism , Humans , Prognosis
7.
Cell ; 184(13): 3573-3587.e29, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1248834

ABSTRACT

The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce "weighted-nearest neighbor" analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.


Subject(s)
SARS-CoV-2/immunology , Single-Cell Analysis/methods , 3T3 Cells , Animals , COVID-19/immunology , Cell Line , Gene Expression Profiling/methods , Humans , Immunity/immunology , Leukocytes, Mononuclear/immunology , Lymphocytes/immunology , Mice , Sequence Analysis, RNA/methods , Transcriptome/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL